Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 144: 105992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393887

RESUMO

The research focuses on the evaluation of the mechanical properties of osteonal cortical bone at the lamellar level. Elastic properties of the mid-diaphysis region of the bovine tibia are investigated via cantilever-based nanoindentation at the submicron length scale utilizing Atomic Force Microscopy, where the force-displacement curves are used for the elastic assessment using the Derjaguin-Muller-Toropov model to calculate indentation modulus. Variations of the modulus and the directional mechanical response of the osteonal bone at different distances from the Haversian canal are investigated. Additionally, the effects of demineralization on the indentation modulus are discussed. It was found that in the axial direction, the first and last untreated thick lamella layers show a significant indentation modulus difference compared to all other layers (4.26 ± 0.4 and 4.6 ± 0.3 GPa vs ∼3.5 GPa). On the other hand, the indentation modulus of transverse thick lamella layers shows a periodic variation between ∼3 ± 0.7 GPa and ∼4 ± 0.3 GPa from near the Haversian canal to near the interstitial bone. A periodic variation in the anisotropy ratio was found. Mineral content was quantified via energy-dispersive X-ray microanalysis at different levels of mineralization and shows a positive correlation with the indentation modulus.


Assuntos
Osso e Ossos , Tíbia , Animais , Bovinos , Tíbia/fisiologia , Anisotropia , Osso Cortical , Elasticidade
2.
J Mech Behav Biomed Mater ; 114: 104143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33176998

RESUMO

This paper focuses on the analysis and quantitative characterization of the effect of saturation on the viscoelastic properties of human root dentin. Uniaxial compression tests under creep conditions have been performed on root molar dentin with tubules fully saturated with a viscous physiological fluid, as well as samples with non-saturated tubules (dry dentin samples). Blair-Rabotnov (BR) fraction-exponential model is used to characterize the overall viscoelastic properties of dentin and correlate them to the level of saturation. Experimental data are compared with theoretical predictions that interrelate the viscoelastic properties of saturated and dry specimens. The results show that saturation increases the viscous creep strains of dentin, which indicates a reduced capacity for stress relief. The uniaxial compression test under creep conditions, in combination with the BR kernel model, allows us to analyze the creep-relaxation behavior of dentin.


Assuntos
Dentina , Fenômenos Biomecânicos , Elasticidade , Humanos , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...